
Conductivity of suspended and non-suspended graphene at finite gate voltage

T. Stauber,1 N. M. R. Peres,1 and A. H. Castro Neto2

1Centro de Física e Departamento de Física, Universidade do Minho, P-4710-057, Braga, Portugal
2Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA

�Received 24 July 2008; published 13 August 2008; corrected 25 August 2008�

We compute the dc and the optical conductivity of graphene for finite values of the chemical potential by
taking into account the effect of disorder, due to midgap states �unitary scatterers� and charged impurities, and
the effect of both optical and acoustic phonons. The disorder due to midgap states is treated in the coherent-
potential approximation �a self-consistent approach based on the Dyson equation� whereas that due to charged
impurities is also treated via the Dyson equation with the self-energy computed using second-order perturba-
tion theory. The effect of the phonons is also included via the Dyson equation with the self-energy computed
using first-order perturbation theory. The self-energy due to phonons is computed both using the bare electronic
Green’s function and the full electronic Green’s function although we show that the effect of disorder on the
phonon propagator is negligible. Our results are in qualitative agreement with recent experiments. Quantitative
agreement could be obtained if one assumes water molecules under the graphene substrate. We also comment
on the electron-hole asymmetry observed in the dc conductivity of suspended graphene.
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I. INTRODUCTION

The isolation of a single carbon layer via micromechani-
cal cleavage has triggered immense research activity.1 Apart
from the anomalous quantum Hall effect due to chiral Dirac-
like quasiparticles,2,3 the finite “universal” dc conductivity at
the neutrality point attracted major attention.4 For recent re-
views, see Refs. 5–10.

The electronic properties of graphene are characterized by
two nonequivalent Fermi surfaces around the K and K�
points, respectively, which shrink to two points at the neu-
trality point �=0 �� is chemical potential�. The spectrum
around these two points is given by an �almost� isotropic
energy dispersion E�k�= �vF�k with the Fermi velocity vF

�106 m /s.11 Graphene can thus be described by an effective
�2+1�-dimensional relativistic field theory with the velocity
of light c replaced by the Fermi velocity vF.12

Relativistic field theories in �2+1� dimensions were in-
vestigated long before the actual discovery of graphene13,14

and also the two values of the universal conductivities of a
clean system at the neutrality point depending on whether
one includes a broadening �→0 or not were reported
then.15–17 In the first case, one obtains ��→0

�=0 = 4
�e2 /h �Ref.

18� while the second case yields ��=0
�=0= �

2 e2 /h.19 Interest-
ingly, the first value is also obtained without the limit
�→0 within the self-consistent coherent-potential approxi-
mation �CPA�.20 We also note that the constant conductivity
holds for zero temperature only; for finite temperature the dc
conductivity is zero.21

If leads are attached to the graphene sample, an external
broadening is introduced and the conductivity is given by
��→0

�=0 ,22–24 which has been experimentally verified for
samples with large aspect ratio.25 This is in contrast to mea-
surements of the optical conductivity where leads are absent
and a finite-energy scale given by the frequency 	 of the
incoming beam renders the intrinsic disorder negligible,
� /�	�0. One thus expects the universal conductivity to be

given by ��=0
�=0= �

2 e2 /h, which was measured in various ex-
periments in graphene on a SiO2,26 SiC substrate,27 and free
hanging.28 Also in graphene bilayer and multilayers,27,28 as
well as in graphite,29 the conductivity per plane is of the
order of �0� �

2 e2 /h.
The above results were obtained from the Kubo or

Laundauer formula and assumed coherent transport. Also
diffusive models based on the semiclassical Boltzmann
approach yield a finite dc conductivity at the neutrality
point. Nevertheless, the finite conductivity was found to be
nonuniversal30–34 in contradiction to the findings of early ex-
periments, which suggested �min�4e2 /h.4 We should how-
ever stress that one can still assume a certain degree of uni-
versality since the experimental values for the conductivity
are all of the order of 4e2 /h. It was argued that electron-hole
puddles35 or potential fluctuations in the substrate31 can ac-
count for a finite conductivity at the Dirac point. An alterna-
tive explanation for this quasiuniversal behavior seen in ex-
periments is that there is only a logarithmic dependence on
the impurity concentration due to midgap states and there-
fore, only in cleaner samples, deviations from the universal
value are seen.33

On the other hand, the optical conductivity is given by the
universal conductivity �0 for frequencies larger than twice
the chemical potential �. It is remarkable that this universal
value also holds in the optical frequency range;28,36 a result
with important consequences in applications.37–39 Only for
frequencies �	
2�, the sample-dependent scattering be-
havior of the electrons becomes important and recent experi-
ments show a decay of the universal conductivity with un-
usual large broadening around 2�, which cannot be
explained by thermal effects.26 Moreover, the spectral weight
for kBT��	�2� does not reach zero, as would be expected
due to Pauli blocking, but assumes an almost constant pla-
teau of ���0 /3 for larger gate voltage.

The first calculations of the optical conductivity of
graphene, using the Dirac Hamiltonian, were done in Ref.
20. This study was subsequently revisited a number of

PHYSICAL REVIEW B 78, 085418 �2008�

1098-0121/2008/78�8�/085418�13� ©2008 The American Physical Society085418-1

http://dx.doi.org/10.1103/PhysRevB.78.085418


times40–43 and summarized in Ref. 17. In these calculations
the effect of disorder was treated in a phenomenological
manner by broadening the delta functions into Lorentzians
characterized by constant width �. As shown in Ref. 20,
however, the momentum states are nonuniformly broadened
with the states close to the Dirac point being much more
affected by the impurities than those far away from that
point. In the clean limit, the exact calculation of the optical
properties of graphene was considered in Ref. 44: a calcula-
tion recently generalized to the calculation of the optical
properties of graphene antidot lattices.45

In this paper, we generalize the results of Ref. 20 by con-
sidering a finite chemical potential, including the effect of
charge impurities and the scattering by phonons. We discuss
two main corrections to the clean system and calculate the
optical conductivity. First, we include the coupling of the
Dirac fermions to in-plane phonons, acoustical as well as
optical ones. Out-of-plane phonons only have a negligible
effect on the electronic properties of graphene.46 Second, we
include various types of disorder that give rise to midgap
states as well as Coulomb scatterers.

In Sec. II, we define the phonon Hamiltonian, deduce the
electron-phonon interaction, and calculate the electronic self-
energy. In Sec. III A, we discuss Green’s function, which is
modified due to impurities and phonons. We then present our
results for dc and optical conductivity, and compare it to the
experiment of Ref. 26. We close with remarks and conclu-
sions.

II. ELECTRONS AND PHONONS

A. Tight-binding Hamiltonian and current operator

The Hamiltonian, in tight-binding form, for electrons in
graphene is written as

H = − �
R,�

�
�

t�R,R + ���a�
†�R�b��R + �� + H.c.� , �1�

where the operator a�
†�R� creates an electron in the carbon

atoms of sublattice A and b�
†�R� does the same in sublattice

B. The hopping parameter, t�R ,R+��, depends on the rela-
tive position of the carbon atoms both due to the presence of

a vector potential A�t� and due to the vibration of the carbon
atoms. The vectors � have the form

�1 =
a

2
�1,	3�, �2 =

a

2
�1,− 	3�, �3 = − a�1,0� , �2�

where a is the carbon-carbon distance. In order to obtain the
current operator, we write the hopping parameter as

t → tei�e/��A�t�·�. �3�

Expanding the exponential up to second order in the vector
potential A�t� and assuming that the electric field is oriented
along the x direction, the current operator is obtained from

jx = −
�H

�Ax�t�
, �4�

leading to jx= jx
P+Ax�t�jx

D. The operator jx
P reads

jx
P =

tie

�
�
R,�

�
�

��xa�
†�R�b��R + �� − H.c.� . �5�

The current term of the operator proportional to Ax�t� will
not be used in this paper and therefore it is pointless to give
its form here.21,36

B. Phonon modes

In order to describe the effect of phonons in graphene, we
adopt the model developed by Woods and Mahan,47 and ex-
tensively used by other authors.48–51 The potential energy of
the model is the sum of two terms. The first is due to bond
stretching and reads

V1 =


2 �
R

�
�

�uA�R� − uB�R + �� · �/a�2, �6�

where uA�R� and uB�R+�� represent the small displacements
relatively to the equilibrium position of the carbon atoms in
the sublattices A and B, respectively. If only term �6� is used,
a simple analytical expression for the eigenmodes is
obtained.52 The second term of the model is due to angle
deformation and has the form

V2 =
�

2a4�
R



��1/2 + �2� · �uA�R� − uB�R + �1�� + ��2/2 + �1� · �uA�R� − uB�R + �2���2 + 
��1/2 + �3� · �uA�R� − uB�R + �1��

+ ��3/2 + �1� · �uA�R� − uB�R + �3���2 + 
��2/2 + �3� · �uA�R� − uB�R + �2�� + ��3/2 + �2� · �uA�R� − uB�R + �3���2

+ 
��1/2 + �2� · �uB�R + �3� − uA�R − a1�� + ��2/2 + �1� · �uB�R + �3� − uA�R − a2���2 + 
��1/2 + �3� · �uB�R + �3�

− uA�R − a1�� + ��3/2 + �1� · �uB�R + �3� − uA�R���2 + 
��2/2 + �3� · �uB�R + �3� − uA�R − a2�� + ��3/2 + �2� · �uB�R + �3�

− uA�R���2� , �7�
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where a1=�1−�3 and a2=�2−�3 represent the vectors defin-
ing the unit cell. The kinetic energy has the form

T = �
R

MC

2
�u̇A�R��2 +

MC

2
�u̇B�R��2, �8�

where MC is the carbon atom mass. The Lagrangian L=T
−V1−V2 leads to an eigenproblem of the form M	2w=Dw,
where

w =�
uAx

uAy

uBx

uBy

 , �9�

and D is the dynamical matrix reading

D =�
X1 F A C

F� X2 C B

A� C� X1 F

C� B� F� X2

 , �10�

with

X1 =
3

2
 +

45

8
� +

9

8
� cos�	3Qya� , �11�

X2 =
2

3
 +

45

8
� −

3

8
� cos�	3Qya�

+
3

2
� cos�3Qxa/2�cos�	3Qya/2� , �12�

A = − e−iQxa − �

2
+

27

4
�� cos�	3Qya/2�eiQxa/2, �13�

B = −
9

2
�e−iQxa − �3

2
 +

9

4
�� cos�	3Qya/2�eiQxa/2,

�14�

C = − i	3�

2
−

9

4
�� sin�	3Qya/2�eiQxa/2, �15�

and

F = i�
3	3

8
�sin�	3Qya� − 2 sin�	3Qy/2�ei3Qxa/2� , �16�

where we have redefined � as � /a2 and Q= �Qx ,Qy� is the
momentum of the excitation. This model can be diagonalized
numerically and its spectrum is represented in Fig. 1.

Although this model can easily be solved numerically, it
is useful to derive from it a simple analytical model, which
helps in the analytical calculation of the electron-phonon
problem. To do so, we follow Suzuura and Ando,48 and in-
troduce two effective models: one for the acoustic and the
other for the optical excitations, associated with the fields
u= �uA+uB� /	2 and v= �uA−uB� /	2, respectively. The effec-
tive Hamiltonian for the acoustic modes has the form

H = K1a2� Qx
2 QxQy

QxQy Qy
2 � + K2a2�Qx

2 + Qy
2 0

0 Qx
2 + Qy

2 � ,

�17�

with K1=3 /8 and K2=27� / �8+36� /2�. The eigen-
modes of this effective Hamiltonian are

MC	2 = K2�Qa�2, �18�

and

MC	2 = �K2 + K1��Qa�2, �19�

with polarization vectors

�TA = i�− Qy,Qx�/Q , �20�

and

�LA = i�Qx,Qy�/Q , �21�

respectively. The velocity of the modes is given by

vTA = a	K2/MC, �22�

and

vLA = a	�K1 + K2�/MC. �23�

The eigenmodes �18� and �19� are represented in Fig. 1 by
dashed lines. They cannot be distinguished from the effective
model described in Appendix A. The effective Hamiltonian
for the optical modes is given by

H = K0�1 0

0 1
� − K3a2� Qx

2 QxQy

QxQy Qy
2 �

− K4a2�Qx
2 + Qy

2 0

0 Qx
2 + Qy

2 � , �24�

with K0=3�+9� /2�, K3= �3 /8−27� /8�, and K4=27��
+9 /4�� / �8+36��. The eigenmodes are

0

200

400

600

800

1000

1200

1400

1600

ω
(1

/c
m

)

K KMΓ

FIG. 1. �Color online� Phonon spectrum of the honeycomb lat-
tice, using =500 N /m and �=10 N /m, such that the optical fre-
quency at the � point is of the order of 1600 cm−1. Also shown are
the spectra of the simplified model discussed in the text �dashed
lines� and the effective model discussed in Appendix A �dashed-
dotted lines�.
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MC	2 = K0 − K4�Qa�2, �25�

and

MC	2 = K0 − �K3 + K4��Qa�2, �26�

with polarization vectors given by

�TO = i�− Qy,Qx�/Q , �27�

and

�LO = i�Qx,Qy�/Q , �28�

respectively. The modes �25� and �26� are represented in Fig.
1 by dashed lines. The dashed-dotted lines of the same figure
are derived from an effective model, discussed in Appendix
A.

C. Electron-phonon interaction

We now address the question of the electron-phonon in-
teraction. This comes about because the hopping t depends
on the absolute distance between neighboring carbon atoms.
We therefore have

t
a + �uA�R� − uB�R + ��� · �/a�

� t�a� +
1

a

�t�a�
�a

�uA�R� − uB�R + ��� · � . �29�

Replacing Eq. �29� in the Hamiltonian �1� and introducing
the Fourier representation

a��R� =
1

	Nc
�

k
eik·Ra��k� , �30�

and

uA�R� =
1

	Nc
�
Q

eiQ·RuA�Q� , �31�

with similar equations for b��R� and uB�R�, the electron-
phonon interaction has form

He−ph = −
1

a

�t

�a

1
	Nc

�
Q,k

�
�,�

�uA�Q� − uB�Q�eiQ·�� · �

� �eik·�a�
†�k + Q�b��k� + e−ik·�b�

†�k�a��k − Q�� .

�32�

Since we are interested in the effect of the phonons with
momentum close to the � point, the phase eiQ·� is expanded
as eiQ·��1− iQ ·�. Introducing the optical modes v, the
electron-phonon interaction with the optical phonon modes
has the form

He−ph
opt = −

1

a

�t

�a

1
	Nc

�
Q,k

�
�,�,�

	 �

MC	��Q�
���Q� · �

� �B−Q,�
† + BQ,���eik·�a�

†�k + Q�b��k�

+ e−ik·�b�
†�k�a��k − Q�� . �33�

Introducing the acoustic modes u, the electron-phonon inter-

action with the acoustic phonon modes has the form

He−ph
ac =

i

a

�t

�a

1
	Nc

�
Q,k

�
�,�,�

	 �

4MC	��Q�
����Q� · ��

� �Q · ���B−Q,�
† + BQ,���eik·�a�

†�k + Q�b��k�

+ e−ik·�b�
†�k�a��k − Q�� . �34�

In both Eqs. �33� and �34� the BQ,��BQ,�
† � operators are de-

struction �creation� operators of phonons of momentum Q
and polarization �.

III. ELECTRONIC GREEN’S FUNCTION

The electronic Green’s function in the Dirac cone ap-
proximation has the form

G =
�i	n − ��i	n� − t��k�

− t���k� i	n − ��i	n� �
�i	n − ��i	n���i	n − ��i	n�� − t2���k��2

, �35�

with ��k�=��eik·�. The electronic self-energy shall be given
by

��i	n� = �imp�K,i	n� + �pho�K,i	n� , �36�

where �imp�K , i	n�=�unit�i	n�+�Coul�K , i	n� represents the
contribution due to midgap states �unitary scatterers� as well
as long-range Coulomb scatterers. The self-energy
�pho�K , i	n�=�opt�K , i	n�+�ac�K , i	n� represents the contri-
butions due to optical and acoustic phonons. We note that the
self-energies originating from the electron-phonon and Cou-
lomb interactions are evaluated at the Dirac momentum K
=2��1 /3,	3 /9� /a. In the following, we will discuss Green’s
functions due to the and various contributions.

A. Green’s function with midgap states (unitary scatterers)

The physical origin of midgap states in the spectrum of
graphene is varied. Cracks, edges, and vacancies53 are all
possible sources for midgap states. From an analytical point
of view, these types of impurities �scatterers� are easily mod-
eled by considering the effect of vacancies. We stress that,
however, this route is chosen due to its analytical simplicity.

The effect of midgap states on the conductivity of
graphene was first considered by Peres et al.20 for the case of
a half-filled system. Considering the effect of a local scatter-
ing potential of intensity �0, Green’s function has the form of
Eq. �35� with the retarded self-energy

�unit
ret �	� =

ni�0

�

1 − �0F�	� − i�0�R�	�
�1 − �0F�	��2 + ��0�R�	��2 , �37�

where the functions F�	� and R�	� are defined by

1

�Nc
�

k
G�k,	 + i0+� = F�	� − i�R�	� . �38�

Midgap states are obtained by making the limit �0→�,
which resembles the unitary limit. Clearly, R�	� is the den-
sity of states per spin per unit cell. Let us write �unit.

ret �	� as a

STAUBER, PERES, AND CASTRO NETO PHYSICAL REVIEW B 78, 085418 �2008�

085418-4



sum of real and imaginary parts, �unit
ret �	�=���	�+ i���	�

�note that ���0�. The functions F�	� and R�	� are deter-
mined self-consistently through the numerical solution of the
following set of equations:

F�	� − i�R�	� =
1

t2�	3
������ − i�/2�

+ ��	 − ������/2 − i��� , �39�

with � and � given by

� = �
=�1

− arctan
��� − 	�

���
+ arctan

��� − 	� + D

���
,

�40�

and

� = �
=�1

log
�����2 + ���� − �	�2

�����2 + ���� − �	 + D�2 . �41�

In Fig. 2, we compare the density of states computed us-
ing the CPA equations with that obtained from a numerical
exact method.54 It is clear that the CPA captures the forma-
tion of midgap states in a quantitative way. The main differ-
ence is the presence of a peak at zero energy in the exact
density of states whose measure is quantitatively negligible.

In Fig. 3 we depict the self-energy calculation using the
CPA equations for two different values of the impurity con-
centration. It is clear that ���	� increases close to zero en-
ergy, leading to a broadening of the electronic states close to
the Dirac point.

B. Green’s function with Coulomb impurities

It has been argued that charged impurities are crucial to
understand the transport properties of graphene on top of a
silicon oxide substrate.31,55,56 In what follows, we compute
the electronic self-energy due to charge impurities using

second-order perturbation theory in the scattering potential.
Electronic scattering from an impurity of charge Ze leads to
a term in the Hamiltonian of the form

V = − �
R,�

Ze2

	d2 + R2
�a�

†�R�a��R� + b�
†�R�b��R�� . �42�

In momentum space, V reads

V =
1

Nc
�

p,q,�
V0�q��a�

†�p�a��p + q� + b�
†�p�b��p + q�� ,

�43�

where V0�q� reads

V0�q� = − �
R

Ze2eiR·q

	d2 + R2
. �44�

With G0�k , i	n� as the bare and G�k ,p , i	n� as the full
Green’s functions, the Dyson equation due to one Coulomb
impurity reads

G�k,p,	n� = �k,p + G0�k,i	n�

�
1

�Nc
�
k�

V0�k − k��G�k�,p,	n� . �45�

If we consider a finite density per unit cell, ni
C, and

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

ω / t
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0.06

0.07

0.08

0.09

0.1

ρ(
ω

)t
/2

Exact ni = 0.005

CPA ni = 0.005

Exact ni = 0.01

CPA ni = 0.01

FIG. 2. �Color online� Density of states of graphene in the pres-
ence of midgap states. The CPA calculation is compared with a
numerical exact method. The concentration of impurities is ni

=0.005 and ni=0.01. Here and in the following figures, we use t
=3 eV and a cut-off energy of D=7 eV.
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FIG. 3. �Color online� CPA calculation of the self-energy
��unit

ret �	� for two impurity concentrations, ni=0.001 and ni

=0.0005. The left panel shows the imaginary part and the right one
shows the real part of the self-energy.
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incoherent scattering between impurities, the second-order
self-energy is given by

�Coul
ret �k,i	n� =

ni
C

�2Nc
�

p
V2�k − p�G0�p,i	n� , �46�

where a term of the form ni
CV�0� /� was absorbed in the

chemical potential since it corresponds to an energy shift
only. Note that we have replaced V0�q� by V�q�, which cor-
responds to include the effect of electronic screening in the
calculation. The form of V�q� is �in S.I. units� �Ref. 33�

V�q� = −
Ze2

2�0�Ac

e−qd

q + �
, �47�

where �=3.9 is the silicon oxide relative permittivity, d is the
distance from the charge to the graphene plane, and � is
given by

� =
����e2

2�0�Ac
, �48�

where ���� is the self-consistent density of states as com-
puted from the CPA calculation �Ac=3	3a2 /2 is the area of
the unit cell�.

The self-energy �Eq. �46�� is dependent both on the mo-
mentum k and on the frequency. However, we are interested
on the effect of the self-energy for momentum close to the
Dirac point. Within this approximation the imaginary part of
the retarded self-energy becomes diagonal and momentum
independent, reading �d�0�

�I�Coul
ret �K,	� � −

Z2e4

4Ac
2�0

2�

ni
C

	3t2
��	��2��	�

3ta
+ ��−2

.

�49�

The self-energy contribution due to Coulomb impurities is
the most relevant one in order to fit the experimental data of
Ref. 26 and is shown on the right-hand side of Fig. 6.

C. Green’s function with phonons

Following the same procedure as in the previous subsec-
tion, the self-energy due to optical phonons within first-order
perturbation theory is given by

�opt�K,i	n� = −
9

2
� �t

�a
�2 1

�MC	0

1

Nc
�
Q

�
1

��
�
m

D0�Q,i�m�G0�K − Q,i	n − i�m� .

�50�

The analytical form of the self-energy due to acoustic
phonons reads

�ac�K,i	n� = −
9

16
� �t

�a
�2 1

Nc
�
Q,�

�Qa�2

4�MC	��Q�

�
1

��
�
m

D0�Q,i�m�G0�K − Q,i	n − i�m� .

�51�

The unperturbed Green’s functions have the form

D0�Q,i�m� =
2	��Q�

�i�m�2 − �	��Q��2 , �52�

G0�k,i	n� =
i	n

�i	n�2 − t2���k��2
, �53�

and 	0=	K0 /MC. The Matsubara summation over the fre-
quency �m is done using standard methods.

1. Effect of Disorder: Fermionic Propagator

If we include the effect of disorder, the unperturbed
Green’s function G0�K−Q , i	n− i�m� should be replaced by
the dressed Green’s function due to the impurities. For the
�relevant� case of optical phonons where the phonon disper-
sion is approximated by 	��Q��	0, the calculations are
simple to do and the result for the imaginary part of the
self-energy due to optical phonons is

�I�op
R �K,	� = −

9

2	3�
� �t

�a
�2 �

MC	0t2 �
=�1

�
�=�1

�2A arctan
A

Ia
 − 2A arctan

A − s�D

Ia
 + 2Ia

 log
�A − s�D�2 + �Ia

�2

A
2 + �Ia

�2 �
� �nB��	0� + �1 − �/2 + nF��	 + �	0 − ��� , �54�

with s=sign A,

A = �	 + �	0 − ����	 + 	0� , �55�

Ia
 = ����	 + 	0� , �56�

and nB�x� and nF�x� are the Bose and Fermi functions, re-
spectively.

The self-energy due to optical phonons, computed using
the disordered electronic Green’s function, is compared with
the same quantity computed using the bare electronic
Green’s function in the central panel of Fig. 4. It is clear that
the imaginary part of the self-energy has a larger value when
the disordered Green’s function is used. However, in the re-
gion of frequencies �−�	0
�	
�	0+�, at T=0, the
imaginary part coming from the optical phonons is zero both

STAUBER, PERES, AND CASTRO NETO PHYSICAL REVIEW B 78, 085418 �2008�

085418-6



when one uses the bare and the disordered Green’s functions.
This is due to the arguments of the Bose and Fermi func-
tions.

In Fig. 4, we depicted the self-energy of the short-ranged
impurities together with those due to acoustic and optical
phonons. It is clear that the effect of acoustic phonons is
negligible at low energies. The self-energy due to optical
phonons depends on the chemical potential and is repre-
sented for a gate voltage of Vg=71 V ��=0.29 eV�.

2. Effect of Disorder: Phononic Propagator

To be consistent, also the phonon propagator has to be
dressed due to its interaction with impurities. The phonon
propagator shall be renormalized within the RPA approxima-
tion, i.e.,

D�
RPA�i	n� =

2	�

�i	n�2 − �	��2 − 2	����i	n�
, �57�

where the first order of the phononic self-energy ���	n� is
proportional to the polarization defined as

P�1��	n� = lim
q�→0

1

As
�

0

��

d�ei	n��T���q� ,����− q� ,0�� , �58�

with ��−q�� denoting the density operator. Explicitly, we get
for the imaginary part of the retarded phononic self-energy

I��
ret�	� =

�

M	�
� lt

�a
�2 18

	3�t2� d	1

2�
��	1,	�

��nF�	1� − �� − nF�	1� + 	� − ��� , �59�

where the dimensional function ��	1 ,	� is given in Appen-
dix B.

In Fig. 5, the self-energy due to electron-phonon scatter-
ing �left� and the conductivity �right� are shown as they re-
sult using the bare �dashed� and dressed �full� phonon propa-
gators. Since the effect is hardly appreciable, we show also
the results where the phononic self-energy has been multi-
plied by a factor of ten �dotted dashed�. The renormalization
of the phonon propagator due to disorder is thus negligible
and the results of the following section will be obtained us-
ing the bare phonon propagator.

IV. DC AND AC CONDUCTIVITY

In this section, we discuss the transport properties of
graphene due to the various sources of one-particle scatter-
ing. This is done within the Kubo formalism.

A. Kubo formula

The Kubo formula for the conductivity is given by

�xx�	� =
�jx

D�
iAs�	 + i0+�

+
�xx�	 + i0+�
i�As�	 + i0+�

, �60�

with As=NcAc as the area of the sample and Ac=3	3a2 /2 as
the area of the unit cell, from which it follows that

R�xx�	� = D��	� +
I�xx�	 + i0+�

�	As
, �61�

and
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FIG. 4. �Color online� Electronic self-energy due to unitary scat-
terers, and acoustic and optical phonons. Only the imaginary part is
represented. The impurity concentration is ni=0.0002. The self-
energy due to optical phonons depends on temperature and on the
chemical potential �. We have chosen �=0.29 eV and T=45 K. In
the central panel we show the calculation for self-energy due to
optical phonons both using the bare electronic Green’s function
�solid line� and Green’s function with midgap states �dashed line�.
The acoustic self-energy is independent of the chemical potential
and is represented for a temperature of T=45 K.
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FIG. 5. �Color online� Electronic self-energy due to electron-
optical phonon interaction I�opt

ret �left� and optical conductivity �
�right� for various phonon propagators. The electronic propagator is
dressed by the self-energies due to Coulomb �nC=0.00013� and
impurity scatterings �ni=0.00004�. The temperature is T=45 K and
the applied gate voltage V=71 V.
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I�xx�	� = −
�jx

D�
As	

−
R�xx�	 + i0+�

�	As
, �62�

where D is the charge stiffness that reads

D = − �
�jx

D�
As

− �
R�xx�	 + i0+�

�As
. �63�

The function �xx�	+ i0+� is obtained from the Matsubara
current-current correlation function, defined as

�xx�i	n� = �
0

�

d�ei	n��T�jx
P���jx

P�0�� . �64�

The calculation of the conductivity amounts to the determi-
nation of the current-current correlation function.

B. Real part of the dc conductivity

The real part of the dc conductivity is given by

R���� = −
2e2

�h
� d�K���

� f�� − ��
��

, �65�

where f�x� is the Fermi function and K��� is a dimensionless
function that depends on the full self-energy. In the limit of
zero temperature, the derivative of the Fermi function tends
to a delta function and the conductivity is given by

R���� =
2e2

�h
K��� , �66�

with K��� given by

K��� =
1

2Ia
�

s=�1
� D�sA + D�Ia

�A + sD�2 + Ia
2 + A arctan

A

Ia

− A arctan
A + sD

Ia
� +

Ia

2A
�2 arctan

A

Ia

− arctan A − DIa − arctan
A + D

Ia
� ,

where

Ia = �I����,A = � − �R���� , �67�

and D is the cut-off bandwidth.
In Fig. 6 we plot �DC��� as function of the gate voltage,

Vg, considering the effects of both charged impurities, mid-
gap states, and acoustic phonons �the optical phonons do not
contribute to �DC����. It is clear that the linear behavior of
�DC��� as function of Vg is recovered. The theoretical curves
are plotted together with the experimental data of Ref. 26.
After having fitted the experimental curves, it is clear that the
most dominant contribution to the dc conductivity is coming
from Coulomb impurities.

Let us now further discuss the conductivity as function of
the gate voltage Vg, which relates to the chemical potential as
Vg��2. In Fig. 7 we show ���� as function of Vg consider-
ing both charged impurities and short-range scatterers �left
panel�, having the same impurity concentration. We note that
the conductivity, albeit mostly controlled by charged impuri-

ties, still has fingerprints of the finite �0 scatterers due to the
asymmetry between the hole �negative Vg� and particle �posi-
tive Vg� branches. The conductivity follows closely the rela-
tion �����Vg, except when close to the Dirac point where
its value is controlled by the short-range scattering.

If we suppress the scattering due to charged impurities,
which should be the case in suspended graphene, only the
scattering due to short-range scatterers survive. In this case
the right panel of Fig. 7 shows that there is a strong asym-
metry between the hole and the particle branches of the con-
ductivity curve even for a value of �0 as large as 100 eV.
Moreover, the smaller the value of �0 the larger is the asym-
metry in the conductivity curve. We note that asymmetric
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FIG. 6. �Color online� Left panel: Experimental data �circles�
from Ref. 26, conductivity with the full self-energy �solid line� due
to phonons, midgap states, and charged impurities, and conductivity
�dashed line� with self-energy due to midgap states and charged
impurities only. The parameters are T=45 K, ni=4�10−5, ni

C

=7.5�10−5, and d=0. The dashed-dotted line is the same as the
solid line but with ni

C=1.3�10−4. Right panel: Imaginary part of
the self-energy, �I�Coul

ret �K ,	�, due to charged impurities, the most
dominant contribution.
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FIG. 7. �Color online� Left: Conductivity ����, in units of �0

=�e2 / �2h�, considering both short-range and charged scatterers.
Right: Conductivity ���� when the influence of charge scatterers is
removed.
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conductivity curves were recently observed.57 On the con-
trary, if the experimental data shows particle-hole symmetry
of ���� around the Dirac point, then the dominant source of
scattering is coming from very strong short-range potentials,
i.e., scatterers that are in the unitary limit.

C. Real part of the ac conductivity

The finite frequency part of the conductivity is given by

R��	� =
2e2

�h
� d	1

	
��	1,	��f��	1 − ��

− f��	1 + �	 − ��� , �68�

where f�x� is the Fermi function and ��	1 ,	� is a dimen-
sionless function given in Appendix B. As can be see from
this Appendix, the function ��	1 ,	� depends on the self-
energy, which is due both to impurities and phonons.

1. Optical conductivity without Coulomb scatterers

We will first discuss the optical conductivity without Cou-
lomb scatterers since they should not be present in suspended
graphene. In Fig. 8, we plot the conductivity of a graphene
plane in units of �0= �

2 e2 /h. The calculation is made at two
different temperatures, T=45 K and T=300 K, and for a
density of impurities ni=0.0004. The calculation compares
the conductivity with and without the effect of the phonons.
The main effect induced by short-ranged impurities is the
existence of a finite light absorption in the frequency range
0
�	
2�. The optical phonons increase the absorption in
this frequency range. We have checked that the effect of the
acoustic phonons is negligible. The optical phonons also in-
duce a conductivity larger than �0 for frequencies above

	=2�. The effect is more pronounced at low temperatures.
In Fig. 9, we again plot the conductivity of a graphene

plane in units of �0= �
2 e2 /h and at temperature T=45 K.

This time we compare different impurity densities ni �left-
hand side� and gate voltages/chemical potentials �right-hand
side�. The more absorption for frequencies in the region
0
�	
2� the larger the impurity concentration becomes.
This is because the number of midgap states is proportional
to 	ni.

20 For larger gate voltage, a plateau is reached at fre-
quencies in 0
�	
2�. For small gate voltages, Vg, the
absorption in the region 0
�	
2� is larger than for larger
Vg.

2. Optical conductivity with Coulomb scatterers

We will now discuss the optical conductivity with Cou-
lomb scatterers, which are generally present in graphene on a
substrate.56 In Fig. 10, we plot the conductivity of a graphene
plane in units of �0= �

2 e2 /h, including the effect of midgap
states, charged impurities, and phonons. Again, the main fea-
ture is that the conductivity is finite in the range 0
�	

2� and increases as the gate voltage decreases. We choose
the concentration of midgap states in Fig. 10 to be one order
of magnitude smaller than those of Coulomb scatterers,33 and
therefore the conductivity is mainly controlled by phonons
and charged impurities.

Another feature of the curves in Fig. 10 is the large broad-
ening of the interband transition edge at �	=2� �indicated
by vertical dashed lines�. Note that this broadening is not due
to temperature but to charged impurities instead. In fact, the
broadening for all values of Vg is larger when the conductiv-
ity is controlled by charged impurities rather than by midgap
states.

The coupling to phonons produces a feature centered at
2�	0+2� where �	0 denotes the LO-phonon energy corre-
sponding to the wave number 1600 cm−1 �indicated by
shorter dotted-dashed vertical lines�. For gate voltages with
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FIG. 8. �Color online� Optical conductivity of graphene at two
different temperatures T=45 and 300 K. Each panel has two curves:
the solid curve is the conductivity with only short-ranged impurities
while the dashed curve is the conductivity with both short-ranged
impurities and phonons, with the self-energy due to phonons com-
puted with full Green’s function. The chemical potential is that
associated with a gate voltage of Vg=71 V. The vertical, dashed
line marks twice this value.
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�
�	0, there appears a similar feature at 2�	0−2� that is
not washed out by disorder. The optical phonons thus induce
a conductivity larger than �0 around these frequencies. This
effect is washed out at larger temperatures and �
�0.

All these effects are consistent with the recent infrared
measurements of graphene on a SiO2 substrate,26 which are
shown as dashed lines in Fig. 11. Notice that there is only
one fitting parameter involved, which is adjusted by the con-
ductivity curve at zero chemical potential. Whereas for low
gate voltage the agreement is good, there is considerable
weight missing for higher gate voltage �V�20 V�. Never-
theless, all theoretical lines predict lower conductivity than
the experimental measurements such that our model with
only one fitting parameter is consistent. Since we have in-
cluded in our calculation all possible one-particle scattering
mechanisms, the missing weight at large gate voltages could
be attributed to electron-electron interactions in graphene,
which become important at these electronic densities.

V. DISCUSSION AND CONCLUSIONS

In this paper we have computed the optical conductivity
of graphene at finite chemical potential, generalizing the re-
sults of Ref. 20. The calculation includes both the effect of
disorder �midgap states and charged impurities, which have a
different signature in the dc conductivity58� and the effect of
phonons �optical and acoustic�. It is shown that at low tem-
peratures the effect of acoustic phonons is negligible since it
induces an imaginary part of the electrons’ self-energy that is
much smaller than the imaginary part induced by the impu-
rities. For a discussion based on the Boltzmann equation, see
Ref. 33.

The imaginary part induced by optical phonons is of the
order of the imaginary part induced by impurities. Still, op-
tical phonons are only important in the calculation of the real
part of ��	�, they play no role in the calculation of �DC���

in the temperature range T� �0,300� K. The self-energies
due to midgap states and due to optical phonons are in a
sense complementary since the imaginary part coming from
impurities is large at the Dirac point whereas the imaginary
part coming from the optical phonons increase linearly with
the energy away from the Dirac point. The imaginary part of
the self-energy due to charged impurities is a nonmonoto-
nous function of the energy, growing first linearly but chang-
ing to a decaying behavior of the form 1 /	 for large ener-
gies.

In Sec. IV, we have discussed the different scattering
mechanisms separately since, for suspended graphene, Cou-
lomb scatterers will be absent. Since vacancies, correspond-
ing to an infinite potential where particle-hole symmetry is
restored, are unlikely, we model the short-ranged potentials
due to cracks, ripples, etc. by large but finite short-ranged
potential. For the dc conductivity, this leads to an asymmetry
of the hole- and electron-doped regime.

The most notable effect on the optical conductivity of
both the optical phonons and the impurities is the induction
of a finite-energy absorption in the energy range 0
�	

2�, a region where the clean theory predicts a negligible
absorption. The optical phonons also induce a conductivity
larger than �0 around �	�2�. It is interesting to note that
for frequencies away from the Dirac point the imaginary part
of the self-energy due to optical phonons is linear in fre-
quency, a behavior similar to that due to electron-electron
interactions in graphene.

It is clear from Fig. 11 that in general the calculated ab-
sorption in the range 0
�	
2� is not as large as the ex-
perimental one. It is also noticeable that for small gate volt-
ages there is a reasonable fit of both the absorption and of the
broadening of the step around 2�. For large values of the
gate voltage, the calculated absorption is smaller than the
measured one. This suggests that some additional scattering
mechanism is missing in the calculation of the optical con-
ductivity. The missing mechanism has to be more effective at
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FIG. 11. �Color online� Real part of the optical conductivity
including the effect of phonons, midgap states, and charged impu-
rities, compared with the experimental data from Ref. 26. The pa-
rameters are T=45 K, ni=4.0�10−5, ni

C=1.3�10−4, and d=0.
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large gate voltage. A possibility is plasmons of the type
found in Ref. 59. Another possibility is that water molecules,
which are especially active in the infrared regime, are con-
tributing to the missing weight.

In synthesis we have provided a complete and self-
consistent description of the optical conductivity of graphene
on a substrate �including Coulomb scatterers� and suspended
�without Coulomb scatterers�. Our results are in qualitative
agreement with the experimental results. To meet a quantita-
tive agreement, further research �also on suspended
graphene� is necessary but water molecules underneath the
graphene sheet are likely to account for the missing weight.
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APPENDIX A: APPROXIMATE PHONON MODEL

We start by expanding the matrix elements of the dynami-
cal matrix �Eq. �10�� up to second order in the momentum Q.
We then introduce acoustic, u= �uA+uB� /	2, and optical, v
= �uA−uB� /	2, modes. This procedure leads to the following
eigenvalue problem:

MC	2�u

v
� = �B1 B2

B2
† B3

��u

v
� , �A1�

with

B1 =
3a2

32
� y1 4QxQy

4QxQy y2
� , �A2�

where y1=3�2+3��Qx
2+ �2+9��Qy

2 and y2= �2+9��Qx
2

+3�2+3��Qy
2. Furthermore, we have

B2 =
3ia2

8
�2 − 9���Qx Qy

Qy Qx
� , �A3�

and

B3 =
3a2

32
� y3 �36� − 4�QxQy

�36� − 4�QxQy y4
� , �A4�

with y3=32+144�− �6+9��Qx
2− �2+45��Qy

2 and y3
=32+144�− �6+9��Qy

2− �2+45��Qx
2. The eigenvalue

problem can be put in the form

B1u + B2v = MC	2u , �A5�

and

B2
†u + B3v = MC	2v . �A6�

Let us first look at the acoustic modes. They corresponds to
	�0. In this case we can write

v � −
B2

†

3� + 9�/2�
u , �A7�

from which an eigenvalue equation for u follows:

B1u −
B2B2

†

3� + 9�/2�
u = M	2u . �A8�

In the case of the optical modes, one has M	2�3
+27� /2, from which we can write

u �
B2

3� + 9�/2�
v , �A9�

which leads to

B3v +
B2

†B2

3� + 9�/2�
v = M	2v . �A10�

The dashed-dotted lines in Fig. 1 are the eigenvalues of Eqs.
�A8� and �A10�.

APPENDIX B: FUNCTION �(�1 ,�)

In Eq. �68� the dimensionless ��	1 ,	� function was in-
troduced. Let us define

A = �	1 − ����	1� , �B1�

B = �	1 + �	 − ����	1 + 	� , �B2�

Ia = ����	1� , �B3�

Ib = ����	1 + 	� , �B4�

D1 = 2��A − B�2 + �Ia − Ib�2� � ��A − B�2 + �Ia + Ib�2� ,

�B5�

and

D2 = 2��A + B�2 + �Ia − Ib�2� � ��A + B�2 + �Ia + Ib�2� .

�B6�

The function ��	1 ,	� is expressed in terms of the above
auxiliary functions as follows
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��	1,	� =
2

D1
Ib�A3 − 2A2B − 2BIa

2 + A�B2 + Ib
2 + Ia

2�� �
=�1

�arctan
A

Ia
− arctan

A + D

Ia
� +

2

D1
Ia�B3 − 2B2A − 2AIb

2 + B�A2 + Ia
2

+ Ib
2�� �

=�1
�arctan

A

Ib
− arctan

A + D

Ib
� +

2

D2
Ib�A3 + 2A2B + 2BIa

2 + A�B2 + Ib
2 + Ia

2�� �
=�1

�arctan
A

Ia
− arctan

A + D

Ia
�

+
2

D2
Ia�B3 + 2B2A + 2AIb

2 + B�A2 + Ia
2 + Ib

2�� �
=�1

�arctan
A

Ib
− arctan

A + D

Ib
� + � 1

D1
+

1

D2
�IaIb�A2 − B2 + Ia

2 − Ib
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